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TOWARD A COMPUTATIONAL NEURGPSYCHOLOGY OF HIGH-LEVEL VISION

Stephen Michae! Kosslyn

Visual processes in humans have recently been studied from three distinct
perspectives, with only the barest amount of cross-fertilization among them.

In this chapter we consider a way of melding the approaches of Artificial
Intelligence (Al), Cognitive Psychology and Neuropsychology, and expiore the
advantages of such a hybrid approach. Each of the individual approaches has
its strengthe and weaknesses, but these are different for the different
approaches; by combining the three, we are in a position to take advantage of
each one“s strengths and may be able to circumvent each one’s weaknesses.
Although 1 believe that most of the observations I will make in this chapter
generalize to the study of all cognitive abilities, I will restrict the
examples to vision. Vision has been the subject of intense study in the three
disciplines, and the evidence seems clear at least in this case that there is
much to be gained by combining the approaches.

The focus in this chapter is on just those eventes that take place near
the end of the visual processing sequence that originates at the eyes., These
events can be considered "mental" because they can be affected by one‘s
knowledge and beliefs (whereas processes carried out by low-level svstems, such
as those localized at the retina, presumably are not affected by one’s
knowledge and beliefs). The study of high-level, "mental® events presents
probleme that are not as severe when one studies "low-level” processing, which
Is closely tied to properties of the stimuly, In low-level vicgion, an analysis
of the geometry of surfaces and the optics of Jight place strong constraints on

v

how information must be processed, as we shall see below. B8y the time we get




Computational neuropsychology 2

to high-level processing, however, these properties of the stimuli have been
transformed numerous times in numerous ways. How can we best go about trying
to understand the last phases of the sequence of transformations? This task is
a little Vike constructing a ship at sea, with each piece floating freely.
Once we have nailed down a few of the pieces, the job will become easier; but
how do we identify those initial pieces? Let us briefly review the key
features and limitations of the approaches currently taken in Al, Cognitive
Psychology and Neuropsychology.
1. The Computational Approach

One way of trying to understand the nature of vision is to consider what
would be necessary to program a computer te see. In so doing, one is first led
to ask about the purposes of vision, and then is led to consider what problems
must be solved in order for it to serve these ends. At the most general level
of analysis, vision serves three functions: First, it allows one to identify
objects and events 1n the environment. Central to this capacity is the ability
to compare representations of input to stored representations of
previous)y-seen objects. Second, it allows one to navigate around in the
environment (without bumping into objects), and conversely, to avoid or
intersect other objects that are moving. Central to this capacity is the
ability to represent metric spatial relations and to update them efficiently as
the organism or part of the environment moves. Third, it allows one to reason

about objects and events in the:r absence (e.g., to consider whether one‘s hand

could $1t into a certain hole one remembers being of a specific size and Ef:g
shape). Central to this capacity 1s the adility to "re-present” objects and

events to onesel¢ in their 1mmediate absence and to operate on these ._;@
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representations in a way that will allow one to anticipate what would happen
should the analogous actual operations be performed in the real worid,

In trying to understand even one of these capacities, researchers very
quickly discovered the usefulness of positing a modular design, with separate
mechanisms being used to carry out distinct aspects of performance. Thus,
researchers in Al developed theories of the processing modules used in
vision. A processing module is a "black box® that carries out specific
computation or computations. By "computation' I mean, roughly, "a meaningful
(i.e., informationally interpretable) transformation of an input.” The
theorist specifies the nature of the computations performed by various modules.

A theory of a computation specifies three things: the information
available to be used in performing a computation, the purpose of the
computation, and a description of what is being computed (see Marr, 1982). For
example, consider a theory of a computation used in lTow-level vision to detect
edges of objecte. The information available is an intensity array, with
intensity values specified for each point on the image. The purpose of the
computation is to discover places where the intensity changes rapidly, which
are assumed to correspond to edges of represented surfaces. What this
computation does can be described as finding the zero-crossings in the second
derivative of the function relating intensity and position. <(The actual theory
is more complicated, involving a convolution of the image with a function
representing the output from the very early processors; however, this brie¢
presentation is sufficient for present purposes. See chapter 3, Marr, 1982).

Researchers in Al do not stop with theories of processing modules and

their constituent computations. Rather, in order actually to build a working

[res——




Computational neuropsychology 4

program one must also formulate a theory of how a computation is actually

4T .

accomplished on-line. Each "black box" can be opened up, so to speak, and its
! internal workings described. Indeed, a theory of processing modules (and their
; associated computations) is a way of organizing sets of representations and
processing operations into coherent units, That is, a processing module is
presumed to correspond to a mechanism that accomplishes the computations that
constitute the module. The on-line operation of this mechanism can be
described by a theory of the algorithm for a given task. The algorithm
specifies step by step how a computation is carried out.

To get a feel for the distinction between a computation and the algorithm

that carries it out, think of the number of different ways one could perform a

computation like multiplication; one could add one of the numbers to itself

3 over and over, convert the numbers to logs and add the exponents, etc. The
actual procedure follows an algorithm, and numerous different algorithms can be
P used to carry out the same computation.

E In the course of developing theories of the algorithms used, a theory of
the functional architecture is developed. <(Newell & Simon, 1972, are

E primarily responsible for introducing the idea of a functional architecture to
psychology.) A theory of the functional architecture specifies the kinds of

representations (e.9., Roman numerals, numbers in log base 10, etc), buffers

(places where representations can be stored), and processing operations (such
as addition,; matching, and substitution) that can be used in the algorithms
that actually carry out the computations (see Kosslyn, 1984, for a more
detailed discussion of the concept of a functional architecture). A given —

component of the functional architecture (e.g., a buffer) in principle could be
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= used by different algorithms that carry out different computations (e.g., the
same buffer can be used to store two numbers being added or multiplied), or it
- could be used only by one algorithm, which carries out only a single
computation.

A "computational theory," then, is a theory that 1) specifies the
processing modules (and the constituent computations) used in performing a set
of tasks; 2) specifies the representations, buffers, and processing operations
used in carrying out the computations; and, 3) specifies the precise sequence
of steps used to perform a set of tasks. Incomplete computational theories are
today the rule rather than the exception, but all computational theories are
directed at eventually specifying these three aspects of information
processing.

Limitations of the approach

On Marr’s view, the core of a theory of how information is processed is
the theory of the computation., The notion of a theory of the computation is
relatively novel for cognitive psychology, and it is worth exploring the force
of Marr’s views, Marr (1982) argues that the information availabie and the
purpose of a computation often virtually dictate what the computation must be.
This sort of theory can sometimes be almost like a solution to a mathematics
problem, arising through logical analysis of the nature of the problem to be
solved and the input available to solve it. That is, if the task is very well
defined, and the input is highly restricted, a specific computation may almost
be togicalliy necessary. Further, Marr claims that once a computation is
defined the task of characterizing the representations and processes used in

carrying out an algorithm is now highly constrained: the representation of the




-

WERF R RN R L

A,

o
()

..

-

Computational neuropsychology 6

input and the output must make explicit the information necessary for the
computation to serve 1ts purpose (e.g., picking out likely locations of edges),
and the representations must be sensitive to the necessary distinctions, be
stable over irrelevant distinctions, and have a number of other properties (see
Marr, 1982, chapter 5).

To return to the example of the computation for detecting edges that was
discussed above, note that once we have described the purpose and the input, we
have almost defined what has to be computed. In addition, once the theory of
the zero-crossings computation was formulated, the theory of the representation
of the ouput of the computation wae highly constrained: it needed toc have
primitives that were likely to correspond to physically-meaningful properties
ot the geometry of surfaces, and had to make explicit places where
zero-crossings exicst, Marr’'s "primal sketch® uses short }ine segments, bars,
blobe and the like to connect :ontiguous zero-crossings, producing a
representation with properties that are desirable as input to later
computatione that derive characteristice of surfaces and shape.

Marr s strong claims about the priority of the theory of the computation
do seem appropriate for some of the problems of low-level vision, but only
because there are such severe constraints on the input (posed by the nature of
the world and the geometry of surfaces) and because the purpose of a
computation is so well-defined Ce.g., to detect places where intensity changes
rapidiy, to derive depth from disparities in the images striking each eye, to
recover structure from information about changes on a surfaces as an object
moves), In cognition, the situation is somewhat different: First, the basic

abilities in need of explanation--analogous to our ability to see edges or to
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see depth in vision--must be discovered. For example, with the advent of new
me thodologies, our picture of what can be accomplished in mental imagery has
changed drastically (e.g., see Shepard & Cooper, 1982). Second, the input to 2
*mental” computation often is not obvious, not necessarily being constrained by
some easily-observed property of the stimulus. One must have a theory of what
is represented before one can even begin to specify the input to the
computations. Third, the optimal computation will depend in part on the kinds
of processing operations that are available; presumably, over the course of
evolution new computations developed in part by taking advantage of the
available processing resources. Thus, developing a theory of the functional
architecture--which specifies the types of representations and processing
operations avaiiable--wouid seem to go hand in hand with developing a theory of
a cognitive computation.

This conclusion is illustrated by problems with some of Marr’s own work on
*higher level" vision. Marr posits that shapes must be stored using
“object-centered” descriptions, as opposed to “viewer~centered" descriﬁtions.
In an object-centered description an object is described relative to itself,
not from a particular point of view. Thus terms such as "dorsal® and “ventral”
would be used in an object-centered description, as opposed to terms such as
*top” and "bottom" which would be used in a viewer-centered description. Marr
argues that because objects are seen from so many different points of view, it
would be difficult to recognize an object by matching viewer-centered
descriptions of input to stored representations. However, this argument, based
on a theory of the purpose of the computation, rests on implicit assumptions

about the kinds of representations and processes available in the functional
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architecture. 14 there is an “orientation normalization” pre-processor, the
arqQument is obviated: in this case, a viewer-centered description could be ;}:
normalized (e.g., so the longest axis is always vertical) before matching to
stored representations. And in fact, we do "mentally rotate" objects to a
standard orientation when subtle judgments must be made (see Shepard & Cooper,
1982). Further, the mere fact that we do seem to normalize the represented .-ﬁ
orientation, at least in some cases, casts doubt on the power or generality of
object-centered representations (if object-centered descriptions are made, it
simply is not clear why orientation normalization would be necessary). In .
fact, when the matter was put to empirical test, Jolicoeur & Kosslyn (1983)
found that people can use both viewer-centered and object-centered coordinate
gystems in storing information, and seem to encode a viewer-centered one even
when they also encode an object~centered one, but not vice versa.

Simitarly, arguments can be levied against Marr‘s assumption that the

'K

representations are genuine 3 dimensional representations, ac opposed to "Z
1/2-D" representatione, where one only stores the visible depth information
(and not the occluded parts, as opposed to an actual 3-D representation, which
stores all parts--as would occur in a stick figure or pattern of points in a
3-D array). Further, one can even question whether shape representations used
in recognition are distinct from those used in navigation and visual reasoning
.48 is involved in deciding whether a jar can fit on a particular space in the ;;<

refridgerator). 1§ not, then the input to the recognition computation is apt

to be quite different from what was assumed by Marr,

The point is that a logical analysis of requirements on the computation is _—
not enough: at Yeast for high~level abilities, the specifics of a computation 1
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will depend to some extent on what types of representations and processing
operations are available in the functional architecture. One can only discover
the actual state of affairs empirically, by actually studying the way the brain
works.

Al though the computational approach is not sufficient in and of itself to
lead one to formulate a correct theory of information processing, it does have
a lot to contribute to the enterprise: Thinking about how one could build a
computer program to emulate a human ability is a very useful way of enumerating
alternative processing modules, functional architectures, and algorithms., Not -
only does this approach raise alternatives that one many not have otherwise
considered, but it eliminates others by forcing one to work them out concreteiy
enough to reveal their flaws (the Guzman approach to vision is a good example; - -
see Winston, 1979,

11, The Cognitive Psychology Approach

The approach in cognitive psychology has been solidly empirical. -
Researchers have developed methodologies that make use of response times, error
rates and various judgments, and have developed ways of using these
methodologies to draw inferences about underlying mechanisms. The -
methodologies used have become very sophisticated and powerful, allowing
researchers to observe quite subtle regularities in processing. AS we saw in
the previous section, such data place strong constraints on theories of L
processing: since processing takes place in real time, there will always be
measyrable consequences of any given sequence of activity--and if the wrong
pattern of responses occurs, a theory can be ruled out, -

Al though the psychologists occasionally focus on the nature of an
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algorithm a suybject is using (particularly if the subject is an expert at the

activity, e.g. see Simon & Simon, 1978), they usually have been interested in
studying specific components of the functional architecture (e.g., a short-term
memory buffer; organization of a long-term memory network; types of production
rules). Properties of components of the functional architecture are revealed
when a person is engaged in a specific Kind of information processing that
presumably requires use of those components, However, it has proven difficult
to draw firm conclusions about the underliying architecture or algorithms
because of two general problems: structure/process tradeoffs and task demand
artifacts.

Structure/process tradeoffs

Anderson (197B) demonstrated that given any set of data, more than one
theory can always be formulated to account for the data. His proof rests on
the pervasive possibility of "structure/process tradeoffs.® That is, what in
one theory are properties of a given representation operated on by a specific
process are in another theory properties of a different representation operated
on by a different process (and this process compensates for the difference in
representations, producing the same input/output characteristics when the
representation is operated upon). The “analogue/propositional® imagery debate
provides a good illustration of this point., For example, consider the results
of experiments on *mental rotation" (see Shepard & Cooper, 1983, for a review),
in which subjects require increasingly more time to compare two similar figures
that are presented at increasingly disparate orientations. The "analoague
theories” posit a representation that depicts the objects. That is, 1)

each part of the representation corresponds to part of a stimulus such that, 2»
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the distances among parts in the representation (where "distance” is defined
functionally--as are distances among cells in an array in a computer) preserve
the actual distances among the corresponding parts. These representations are
tike patterns of points in an array in a computer, and rotation is accomplished
by shifting the points incrementally--with more shifts being required to effect
a greater change in the represented orientation (see Kossiyn, 1980; 1981).

In contrast, "propositional theories” posit that objects are always
represented in terms of descriptions. In this case, each part is described as
being in a certain position relative to another part (e.g., attached to the
left and oriented 45 degees up), and "rotation” consists of altering the
relations incrementally (e.g., changing the number representing the angle from
45 to 90 degrees in 15 degree steps). Thus, greater "rotations" require more
time,

The two types of theories mimic each other, but in a rather uninteresting
way: they are created ad hoc simply to account for the data. What is required
are constraints on the theories, a source of motivation for selection of the
specific representations and processes, UWhy should information be represented
depictively or propositionally? Why is the transformation apparentiy done
incrementally? Computational considerations are one possible source of
constraint C(e.g., a depictive representation makes explicit all metric spatial
relationships among an object’s parts, which is very useful for performing
certain Kinds of computations). However, we saw above that computational
constraints in and of themselves are not sufficient--and in fact the
observation of how the system functions (i.e., the dependency of response time

on angle) put constraints on computational theories themselves,
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Anderson (1978) drew some very pessimistic conclusions from the possiblity
of speed/accuracy tradeoffs, but others such as Hayes-Roth (1979) and Pylyshyn
(1979) were less gloomy. The upshot of the debate seems to be that it is
possible to derive firm inferences about processing mechanisms from behavioral
data, but it is very difficuit to do so. One argument to be developed in this
chapter is that neuropsychological data are powerful supplements to the usual
behavioral data, and greatly diminish the ease of using structure/process
tradeoffs to concoct alternative theories,

Task demands

Another problem in interpreting behavioral data is the possibility of task
demands, which is especially severe in studies of visua) thinking., That is,
subjects may respond (e.g., by taking longer to rotate an image of an object
oriented at a greater angle) because they believe--perhaps unconsciously--that
this is what the task requires them to do. Part and parcel of understanding
the tark mav be to mimic the analogous reai worlid event (cf., Pylyshyvn, 1981,
1f so, then data from many studies of mental imagery may say nothing about the
nature of the underlying mechanisms, but only reflect the subjects’
understanding of tasks, knowledge of physics and perception, and ability to
reguliate their response times. |

Although the problem of task demands has been brought to our attention
primarily in the imagery literature (see Kossiyn, Pinker, Smith & Shwartz,
1979, and commentators on that paper), it is applicable to many domains in
cognitive psychoiogy. There is no way to ensure that subjects are not

unconsciously grnducing data in ac-ordance with their "tacit knowledge" about

perception (and cognition) and their understanding of what the task requires
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them to do. 1In contrast, neurological maladies not only produce behavioral
deficits of various types, but often the patients are not aware of the nature
of these deficits (as will be discussed below for “unilateral visual neglect”).
Thus, these types of data might profitably supplement the usual cognitive data
i$ $or no reason other than to rule out task demand accounts of data (to the
extent that patients cannot be responding to task demands because they are
unaware of what they cannot do?>. And such oata are useful for other purposes,
as discussed in the following section.

In short, the strong suit of the cognitive psychologists is their
sophisticated methodologies and the weli-described phenomena discovered in the
laboratory. However, although these phenomena can be used to rule out theories
that posit specific structures operated on by specific processes, they are
difficult to use to pin down the properties of specific aspects of the
functional architecture; a theory must explain the data, and although many
cannot, there remain many that can. As will be discussed shortly,
neuropsychological data help to put two important kinds of constraints on
theories of how information is processed: constraints on the nature of the
processing modules, and constraints on the representations and p- :ssing
operations used in the modules. However, these data are useful only if
construed within a theoretical framework--which can be provided using a
computational approach--and if approached with sensitive methodologies--which
have been developed in cognitive psychology.

111. Neuropsyvchological approaches
It is important to begin by distinguishing between two related, but

distinct, neuropsychological projects: On the one hand, one can focus on the

P
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theory of functioning. That is, one could use neuropsychological data (e.g.,
behavioral dysfunction following brain damage) to help formulate and evaluate
the computational theory. On the other hand, one can focus on the brain per
se. In this case, one would try to characterize different brain toci (e.g.,
cerebral hemispheres) or patterns of activation in terms of the computations
they support. In this chapter the focus is on the theory of functioning,
although in developing such a theory we may discover interesting facts about
the role of specific brain structures, It ics my belief that a good
computational theory will provide a good “"road map" to guide investigations of
the operation of the organ itself, and may even be a necessary prerequisite to
understanding how the brain itself works.

The fact that cognition is something the brain does is so obvious it
seems barely worth stating, But because of this fact, if a theory of cognitive
processing is correct, then the various distinctions made in the theory must be
respected by the brain. For example, if a theory claims that shape and color
are extracted by separate mechanisms, then separate mechanisme must exist in
the brain (which need not be localized in distinct regions, however). The
nature of the brain introduces a number of constraints for theories of
cognition: The theory should be able to explain why certain abilities are lost
together whereas others can be lost separately. It should also be able to
explain why patterns of brain activity are more or less similar for different
sorts of tasks. Furthermore, theories must obey the broad constrainte imposed
by the nature of the mechanism itsei$; for example, if a theory posits that
items are searched at a rate exceed:ng the firing time of neurons, the theory

must be incorrect. Thue, it maKes sense to look at data that bear on the

g
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functioning of brain mechanisms when formulating and testing theories of
cognition,

Neuropsychological data are of two broad classes: First, and by far the
most predominant, are data on behavioral dysfunction following brain damage.
The damage can be endogenous (e.g., following a stroke or development of a
tumor) or exogenous (e.g., following head injury or surgery, as in split-brain
patients). Second, and of more recent vintage, are data on dynamic changes
within an intact brain performing specific cognitive tasks. These data are
obtained primarily by using EEG (electroencephalographs), ERP (event-related
potentials), PET (positron emission tomography), Xenon-133 regional cerebral
bloodflow, and NMR (nuclear magnetic resonance) techniques. Each technique has
different advantages and drawbacks, and to a large extent they complement one
another.

John Hughlings Jackson is usually credited with making the first
substantive observations on visual deficits following brain damage. In 1874 he
described a way in which the cerebral hemispheres might be specialized,
proposing that the posterior part of the right hemisphere is the “chief seat of
the revival of images in the recognition of object, places, etc. (pg 101)",
This inference was based on the problems a patient with a lesion in this area
had in Knowing where she was. In 1876 Jackson described what is now known as
"*visual agnosia®” (also called "mindbl indness"); this patient failed to
recognize her nurses, got lost frequent)y when travelling familiar routes, and
often did not know objects, persons or places. This malady resulted from a
lesion in the posterior right hemisphere, Patients suffering from visual

agnosia are not blind: these patients can compare two shapes reliably when
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both are visible, but they cannot visually recognize what an object is
(although many can recognize objects by touch). This sort of agnosia has been
well-documented in the literature (see Benton, 19682). 8y 1910 a number of
visual/spatial deficits fo)lowing brain damage had been identified, including
difficulties in reading, locating objects in space, and "neglect” (ignoring) of
objects that lie off to one side of the viewer, In addition, various theorists
(e.9., Rieger, 1909; Reichardt, 1918-~discussed in Benton, 1982) hypothesized
that spatial/practical functions and verbal/conceptual functions are carried
out by distinct mechanisms, which might be localized to the cerebral
hemispheres (with verbal/conceptual on the teft, spatial/practical on the
rights.

Recent reviews of the literature on visual deficits following brain damage
(e.g., Benton, 1982; Ratcliff, 1982) reveal that we now know that various
clinical signs are fairly common following damage in particular regions of the
brain (e.g., neglect of the left side often follows damage to the right
parietal lobe), and we know that various deficits can be dissociated. For
example, patients can have difficulty in copring objects (by drawing or
constructing a model) but have no visual discrimination problems, or vice versa
(Costa & Vaughan, 1962). In addition, considerable effort has been made in
trying to identify various functions with one hemisphere or the other (see
Springer & Deutsch, 1981).

Perhaps the most important conceptual development in the brain damage
literature is the formulation of the logic of the "double dissociation.® 1f
some behavioral deficit reflects damage to a specific processing mechanism

(e.9., for performing some sort of shape discrimination), and at least part of
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this mechanism is distinct from other processing mechanisms, then one should
find cases where the ability is spared while other abilities are disrupted
(e.g., perhaps discriminating orientation) and vice versa. (It is the "vice
versa” that produces the "doubie” dissociation.) This sort of data provides

g' very strong evidence for a particular configuration of processors in the
F system,

In addition to dissociations, one alsc finds associations. If a patient

- cannot perform task X, in many cases he or she aliso will be unable to perform
b; task Y., This sort of result could indicate that the same aspect of the

53' functional architecture is recruited in performing both tasks, and that

component no longer functions effectively. However, one must be careful here:
it could be that different functions happen to be carried out by the same (or
nearby) cortical tissue, and hence the association of deficits following brain
damage in a given region says nothing about shared functions in different
tasks., Thus, carefu] tects must be devised to ensure that processing is
disrupted in the same way in different tasks in order to provide evidence that
the tasks share a processing component (] will provide an example of this in
the next section).

imi i r h

There are two limitations evident in the neuropsychological Viterature

that are of particular interest here: First, the theories have not been very
sophisticated. For example, “localizing oneself in space” is usvally

considered a single ability in the neuropsychological literature, whereas a

computationally-oriented theorist would be inclined to decompose this ability

into various encoding, representation and retrieval operations. Similarly,
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visual agnosia is described ("mindblindness”), but the underlying causes of the
deficit have not be explained; a computational approach would lead one to
attempt to characterize the nature of the representations (or properties
thereof) that may be lost or to characterize the nature of the failure of
processes that encode perceptual information, match it to stored fnput, and
make use of the stored information.

The computational approach has recently had an influence in
neuropsychology, and appears to be a promising avenue for future work. For
example, Moscovitch (1979) distinguishes between low-level "stimulus features"
(presumably processed by both hemispheres) and higher order processes (which
may be localized in one cerebral hemisphere). This distinction helps to
explain why hemispheric specialization on)ly appears for some phenomena. A more
detailed computational analysis might reveal that a given type of stimulus
feature (e.g., places where intensity changes most rapidly) might rely on a
computation that is localized in a given region, whereas others might rely on
computations localized in other regions. Thus, guided by such notions a closer
ook might reveal subtlities that are not evident in the available data. @An
analogous case is our study of image generation, discussed in the following
section, which illustrates how a computational analysis can illuminate
neuropsychological phenomena.

The second limitation evident in many neuropsychological studies with
humans (but not usually with animals; e.g., see Ungerleider & Mishkin, 1982) is
a lack of sophisticated methodologies. Much neuropsychological work centers on
administering standardized tests to various patient populations and looking for

differences in performance. These tests, however, do not necessarily tap
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distinct underlying processing mechanisms, and performance on them may be
related in a complicated way to underliying deficits.

In short, neuropsychological data provide another source of constraint on
theories of high-level visual processing. They have the potential of being
especially useful in identifying processing modules, given the logic of "double
dissociation®. Let us now consider in more detail some of the potential
benefits of combining the three approaches.

IV, Combining the Approaches

The logic of dissociations and associations in deficits is a very powerful
way of developing and testing computational theories if it is yoked with the
methodologies and analytic techniques developed by the cognitive psvchologists.
The methodologies developed by the cognitive psychologists for the most part
can be adapted for use in neuropsychological studies (much as many of them have
been adapted to studry cognitive processes in children; e.g., see Siegler,
1978). However, this has not been done by the few researchers who have used
neuropsvchological data to place constraints on explicit computational theories
of high-level vision. For example, Marr (who was perhaps the best
computational theorist, and thus worthy of such close examination) was very
impressed by the Warrington & Taylor (1973) findings on the failure of patients
with parietal-lobe damage to recognize mis-oriented objects (e.g., buckets
viewed from the top). Marr concluded that this failure demonstrated that
objects were stored as descriptions, and that descriptions were structured
around assigning a major axis to an object and then minor axes (of attached
parts) off of it; when buckets were seen top down, one presumably had

difficulty locating the major axis, Unfortunately, the patient's problems may
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have had nothing to do with axis assignment: perhaps they were unable to
"mentaliy rotate” the buckets into a connonical orientation during the
recognition process. This possibility is, of course, directly testabie by
applying the methodologies of contemporary cognitive psychology to brain
damaged populations.
S

To summarize, each of the three approaches discussed above has something
to offer, and each is complemented by the other two:

The computational approach is especially useful for generating hypotheses
about processing mechanisms: Thinking about the requirements of the tgsk at
hand and how one would need to program a computer to perform it is a good way
of generating alternative possiblilities. In addition, this approach provides
3 way of testing compiex theories, by actually building a computer program that
emulates cognitive processing (see Newell & Simon, 1972). Precise theories of
on-line brain functioning may wel) be so complex that many of a theory’'s
implications will be derived oniy by using simulation models,

Neuropsvchological data offer constraints both on theories of processing
modules and theories of the functional architecture., The finding of double
dissociations allows one to argue that abilities involve at least some
specialized processing modules. In addition, as will be illustrated shortly,
the finding of specific deficits that generalize across tasks of a given type
can be used to implicate specific representations and buffers. However,
neuropsychological data are open to multiple interpretations (just as are any
other data), and must be approached analytically.

The methode of cognitive psrchology can be profitably used analytically to

investigate computational hypotheses about neuropsychological phenomena, These
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methods allow one to isoclate the variables responsible for an effect, and often
specific variables can be identified as reflecting the operation of distinct
computations (e.g., using Sternberg’s, 1946, additive factors methodology). In
addition, once there are prior reasons for positing a specific modular
composition of the system, the standard techniques of cognitive psychology
become more powerful: Once a module is defined, the number of "degrees of
freedom” is reduced for possible structure/process tradeoffs. That is, without
moduiarity constraints, any part of the system can be invoked in combination
with any other part to explain a specific result; but if a result can be shown
to rest on the operation of a specific module--which is distinct from other
moduies--the explanation of the result becomes more constrained. Once
well-specified classes of alternative theories are defined, cognitive
psychologiste are better able to specify which phenomena will distinguish among
competing accounts (e.g., see the mental rotation case discussed above as
treated in chapter 8 of Kossiyn, 1980).

Thus, the three approaches complement each other. The very rich
neuropsychological phenomena place strong constraints on computational
theories, especially when the tools of cognitive psychology are used to
precisely characterize the phenomena. 1In addition, the computational approach
provides useful guidelines about which phenomena are worth detailed scrutiny
(as illustrated above in the discussion of Marr‘s use of Warrington & Taylor‘¢c
findings>. Furthermore, theory development will become much more
challenging--and potentially rewarding~-if we combine the requirements from all
three disciplines: The theory must not only explain the neuropsychological

phenomena and the data from normal subjects, but ultimately must be capable of
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guiding one to build a computer model that actually emulates the behavior of
normal and brain-damaged subjects. Unlike the case in cognitive psychology,
where it is easy to construct numerous alternative theories, we will be lucky
to formulate even a single theory that meets these criteria.
V. Some Examples of A Computational Neuropsychology
of High-Level Vision

1t is probably most useful to provide some concrete examples of how this
combined "computational neuropsychological® approach can be used. Let us begin
by very briefly considering the key aspects of the Kosslyn & Shwart:z
computational theory of visual mental imagery, and then consider one example of
1) how available data in the neuropsychological literature bears on the theory;
2) how behavioral dysfunction following brain damage can be used to tect and
help develop the theory; and 3) how PET scanning studies can be used to test
the theory,

The key claims of the Kosslyn & Shwartz theory can be divided into two
classes, pertaining to representations and processes, With regard tc
representations, the theory claims that the experience of *having an image"
reflects the existence of a depictive representation in a visual short-term
memory buffer. Such a representation depicts in the same way that a pattern of
points in an array in a computer can depict an object (see Kosslyn, 1983},

This representation occurs in a buffer (which is a component of the functional
architecture) that functions as an array, with patterns within it comprising
the image itself. The image is a temporary representation, which is created on
the basis of information stored in long-term memory., We claim that visual

memories of objects are stored in long-term memory in terms of a) perceptual
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memories, organized into "chunks® which correspond to parts of objects (e.g., a
dog’s body, legs, etc might be stored in distinct units) and b) descriptions,
which indicate how the chunks are arranged.

With regard to the processing modules themselves, which make use of the
representations, let us consider here only those used in generating an image
(i.e., creating a short-term memory representation on the basis of information
stored in long-term memory), Previous research has suggested that image
generation is not a single computation. Rather, generation seems to involve a
processing module that actually activates stored perceptual information (called
PICTURE in our theory), another that "looks" for locations where other parts
belong on partially completed images (called FIND in our theory), and yet a
third (called PUT in our theory) that uses descriptions (e.g., "a cushion is
flush on a chair“s seat®) to position additional parts into an imaged object
({see Kosslyn, 1981, for a brief overview>, For example, in imaging a chair the
PICTURE processing module would activate the main form of the chair icalled a
“gkeletal image” in our theory), and in order to image the cushion on the seat
the FIND processing module would locate the seat, and the PUT processing module
would use the location information (plus its "understanding®” of the meaning of
the relation "$lush on") to provide input to the PICTURE module so that the
cushion would be imaged at the correct position relative to the seat. The PUT
processing module is putatively responsible for looking up the description of
the part and its retation, and uses this information to invoke the FIND and
PICTURE modules appropriately.

This theory is based on computational and empirical arguments: On the

computational side, the creative properties of image generation (e.Q., as
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involved in creating a scene from previousiy isolated elements, such as Ronald
Reagan shaking hands with George Washington)--which are useful in visual
reasoning--demand some process that coordinates separately stored encodings.
and i images can be formed at different sizes and locations, then new parts
must be imaged relative toc previously placed ones (not relative to some
absolute coordinates), which requires "finding" the parts of previously imaged
portions of an object before positioning new portions. On the empirical side,
it has been found that the ease of forming an image depends in part on the
*discriminabilty” of the location at which it is to be put on an imaged object.
Thie result supports the idea that one inspects a partially completed image in
the act of integrating in new parts (see Farah & Kosslyn, 1981; Kosslyn,
Reiser, Farah & Fliegel, 1983). In addition, findings that people can use
descriptions to arrange items into an imaged scene forces one to posit some
computation(s) that use descriptions to position segments of an image (see
Kosslyn, 1980; Kosslyn et al, 1983).
1t is possible, however, to argue that the data (which consist of
reaction-times collected from normal subjects) reflect task demands or the
like. And one could argue on computational grounds that the PUT and PICTURE
modules are not distinct, that activation of the stored information is simply
one aspect of the PUT module’s operation. Hence it is desirable to have
stronger data supporting the proposed computational decomposition.
in_the literature: an ex le

There is already information in the literature on brain damage that seems

to have direct bearing on the nature of the representations and processes used

in imagery. These data indicate that specific deficits are general across a

-—




Computational neuropsychology 25

class of tasks, and seem to implicate problems in processing an array-like
image of the sort posited by our theory. In particular, Bisiach & Luzzatti
(1978) report that two patients with unilateral visual neglect (i.e., they
ignored visual input on the left side) also showed corresponding neglect in
their images of scenes encoded prior to the stroke. When asked to image a
plazza from a particular point of view and describe what they "saw," they
mentioned only objects that should have been to their right side; when then
asked to image it from the opposite side, these patients reported "seeing”
objects that now were on their right--which were the very ones ignored
immediately before, when they were “*viewing" from the opposite perspective!
This phenomenon was also found when subjects imaged a familiar room from
different perspectives. 1In later work, Bisiach, Luzzatti & Perani (1979) used
a more objective task and found the same resuits: these sort of patients
neglect half of their mental images., It is of especial interest that the
patients lacked meta-knowledge about their malady. They were unaware that they
neglect the left side...which puts strain on an attempt to explain the data in
terms of "task demands" based on “"tacit knowledge" (as was discussed in the
section on cognitive psychological approaches),

These data, then, are exactly what one would expect if our theory is
correct, and images are array-like spatial representations with parts on the
left side. Unfortunately, these patients also had slight "field cuts”" on the
left side. Thus, we cannot infer from these results whether the "mind’s eve"
(the tests used by the FIND processing module, in our theory) were selectively
ignoring half of the representation, or whether half of the functional array in

which images occur was disrupted. However, in principle the matter could be
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settied if patients could be located with neglect but no field cuts,
Evidence llected to test the theory: Brain age

A recent review concluded that there is data suggesting that imagery is
Tocalized in the left, right, or both hemispheres; there was no unambiguous
evidence for its localization in the right hemisphere, as is assumed in the
common wisdom (see Ehrlichman & Barrett, 1983). And in fact, Farah (1983
reviewed the neuropsychological literature and found evidence that different
imagery abilities may be localized differently; in particular, she argued that
image generation requires mechanisms that occur in the left hemisphere. But
even here the story is not so clearcut, with some results contradicting the
generalization. However, unlike earlier theories of imagery, ours posits that
the act of generating an image requires the operation of three processing
modules working in concert., And it need not be the case that all computations
involved in exercising a given abilility are localized in the same place (or
even nearby) in the brain., Our theory might, then, offer a way to sort out
what now ie a muddy picture in the neuropsychological Yiterature.

Kossiyn, Holtzman, Gazzaniga, & Farah (1984) have performed a large set of
experiments designed to examine the claim that the module that coordinates
multiple parts into a single image (the PUT processing module) is distinct fom
the PICTURE and FIND modules. We began by testing image generation of letters
of the alphabet in the two isolated hemispheres of a split-brain patient. In
our first series of experiments we asked the subject to make spatial judgments
about letters of the alphabet, deciding whether upper case letters were
composed only of straight lines or included some curves. Robert Weber and his

colleagues have demonstrated convincingly that normal subjects require imagery
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in order to make these judgments from memory (see Kosslyn, 1980, for a review

of this work). We reasoned that most adults have seen so many letters that if
asked to image one, they do not image a specific letter they once saw (e.g., on
page 43, line 5 of yesterday’s New York Times). Rather, they use a stored
description of the letter to generate a ®prototypical example”. For example, a
capital "a" might be stored as “two lines meeting at the top joined half way by
a horizontal line." The PUT processing module would use such a description to
assemble an image using stored images of lines, and hence the
letter-classification task should be very difficult if the PUT module were not
operating effectively,

To test this idea, we flashed a lower case letter into the left or right
visual field, and asked our subject to decide whether or not the upper case
version had any curved lines (pressing one button if it did, another if it did
not>, He showed a huge left hemisphere advantage. This was interesting in
part because his left hemisphere showed superior ability at language and
inference, both of which involve serial processing of symbols, and we posit
that the PUT module performs serial symbol manipulation. Various control
conditions were conducted to show that the right-hemisphere deficit was not due
to its failing to understand the instructions, to know the association between
upper and lower case letters, to retain an image, to make the judgment, or to
combine together separate stages of a task. The deficit seemed to be in
generating the image from stored information.

In order to implicate a deficit in the operation of the PUT module per se,
we needed to show a dissociation between this task and other imagery taske that

putatively do not require this module, Thus, in other experiments we used
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stimuli that presumably need not be imaged from a description of parts in order
to perform the task. 1In one, names of animals were presented to one hemisphere
or the othe- 1f the named animal was larger than a goat, the subject was to
press one button; if a goat was larger, he was to press the other button. Now
both hemispheres performed essentially perfectly, and there was absolutely no
difference in response times. This task has been shown to require imagery
when the to-be-compared objects are close in size (e.g., goat vs. hog; see
chapter ¢ of Kosslyn, 1980), 1In this case, however, only the global shapes
(the "skeletal images") are necessary, not the parts,

One could argue that the right hemisphere simply has problems in
generating images of letters because they are language-related materials.
Thus, it is of interest that in another task the right hemisphere failed
miserably when given the same names of animale used in the size comparison
task. Now, however, the question was, do the animal’s ears protrude above the
top of its skull? 1I¢ so, the subject pressed one button; if not, he pressed
another. In this task, an image of the ears must be correctly positioned
relative to the head, and it is this positioning-operation that apparently is
difficult in the right hemisphere of this patient.

Thus, the results served to implicate a distinct PUT processing module:
both hemispheres were comparable in their abilities to form and evaluate images
of global shapes, which requires the PICTURE and FIND modules, but the right
hemisphere showed a selective deficit in tasks that should require the PUT
module to perform,

The point is, then, that we can directly test our computational theory by

taking advantage of the idea that one or another computation may be localized
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in a cerebral hemisphere in this patient. We recently have been repeating the
studies done with split brain patients, now using normal subjects and looking
for reaction time differences. It is interesting that we find small but
consistent reaction time differences in normal right-handed male subjects that
mirror the dramatic effects we found with the split brain subjects. However
these effects are so small that they would not be noteworthy in the absence of
the neuropsychological findings. Because the neuropsychological effects are
almost qualitative, these sorts of results have the potential of supplring
strong evidence for or against computational theories.

In addition, this sort of approach may well help untangle the convoluted
story of how abilities are (or are not) localized in the brain. For example,
we now need to administer image generation tasks that do or do not require
integration of parts using descriptions, and discover whether patients having
different sorts of lesions have selective difficulties with the different
tasks.

vidence {r intact braing: PET scannin

Drawing inferences from research on brain-damaged patients 1s slightiy
suspect because the functions in a damaged brain could possible have become
organized in ways different from an intact one. Thus, it is useful to obtain
convergent measures using an entirely different methodology. The Cornell
Medical College and Harvard Psychology groups are just now planning PET
scanning studies. The logic here is as follows: To the extent that tasks share
similar processing, there should be similar patterns of activation in the
brain. Further, i a theory claims that the same processing module is used in

two tasks, then we may find (but not necessarily) that the same region or
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regions are activated in both cases. If we do not find this, we must discover
how context shifts which parts of the brain are involved in which functions.
The initial studies we are conducting are very simple: For example, we will
ask subjects to listen to names of common objects, and to image the sound of
the object (e.g., a train), its visual appearance, or both at the same time.

14 our theory is correct, parts of visual cortex--but not auditory
cortex~-should be activated when one forms a visual image but not an auditory
one, and vice versa when one forms an auditory image. (After they finish
imaging the words--and the PET scanning is over--we will test the subjects”’
recognition memory for sounds and pictures, expecting to find better memory for
items imaged in the modality being tested; this will provide a check that
subjects actually behaved as asked.) In addition, we hypothesize that the two
systems will operate independently, even when one forms a multi-modal image
(which will cause activation of the regions activated when visual or auditory
images were formed in isolation). In later experiments we plan to ask subjects
to participate in various imagery tasks that putatively share greater or lesser
numbers of processing modules, and will examine the similarity and overlap of
activation during each task (for an example of how this logic can serve to
iltuminate the nature of individual differences, see Kosslyn, Brunn, Cave &
Wallach, in press).

In this case, then, the theory serves to provide a framework for
interpreting very complex neuropsychological data. In addition, the techniques
of cognitive psychology allow us to design tasks to test the theory using these
sorts of data. The three approaches, from Al, cognitive psyvchology, and

neuropsychologQy, clearly complement each other.
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;{ VI. Conclusions

i In summary, the time seems ripe for a marriage of Al, cognitive
psychology, and neuropsychology. Each field has built up a considerable dowry,
but has also revealed limitations. The marriage seems likely to be mutuaily
beneficial, UWhether a combined approach will indeed provide a major leap
forward is, of course, something only time will tell. But it would not be
surprising if the studr of cognition were greatly enhanced by considering the

brain. Cognition is, after all, something the brain does.
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I The author wishes to thank Martha Farah, Lynn Robertson, and Eric Wanner for
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